1. Summary

Playmaster No. 11 Amplifier \& Control Unit No. 6 Preamplifier.
Commercial project kits - unknown provider. Preamp joins to amp with 6-pin cable assembly.

1.1 Original Amplifier

Appears to be a kit based on Playmaster No. 11 amplifier project in Radio Television and Hobbies August 1955, but with input connector replacing tone and volume controls prior to EF86, and coupling to Control Unit No. 6 preamp. 16Wrms nominal rating. Spot-welded aluminium chassis. EF86 input amplifier, then 12AX7 long-tailed phase splitter, feeding EL84/6BQ5 cathode biased push-pull.

Components

Output Transformer Ferguson OP308/15/3.75
8000 \& 6000 PP primary 12 W rated "HiFi for Mullard 5-10 Amplifier"
Power Transformer Ferguson PF169 230/240 Prim;
325-0-325V $80 \mathrm{~mA} \mathrm{SEC} ; 6.3 \mathrm{~V}-2 \mathrm{ACT}$; 6.3V-2A; 6.3Vtapped5V-2A.
Choke IRONCORE 1256 (12 H at 56 mA)
CAPs Ducon 24 uF 525 V (x4)
Tubes $\quad 5 \mathrm{Y} 3 \mathrm{GT}$ fitted (original spec was 5V4-G)
6BQ5/EL84 x2 Miniwatt both with code rX2 and X5G ${ }^{1}$
12AX7 Miniwatt code 47B
EF86 Miniwatt code 9r1 B6F

Issues:

No protective earth or fuse or power switch. Waxed paper caps leaky.

1.2 Original Preamplifier

Playmaster project, CONTROL UNIT No 6 . Using $2 \times$ EF86's, high gain unit for any PU switched tone controls. Radio and Hobbies November 1954, page 46. Umbilical cable connection to Amplifier.
Preamp
POTs
IRC marked. x1 Volume
Tubes
EF36 Miniwatt
EF36 Miniwatt
Selector RIAA, EMI, DEC, 78, RAD

[^0]
1.3 Playmaster amplifier information

Radio and Hobbies August 1954, page 70.
Radio and Hobbies November 1954
Original kit of parts from Electronics Parts P/L (Sydney) cost about $£ 45$ for the Amplifier No. 11 and the AG2002 record player, and $£ 54$ built and tested (R\&H advert).
Still to check July 1958 and October 1958 issues: Radio, Television and Hobbies.
The amplifier kit is even more exactly the same as the Mullard 5-10, for which the Playmaster variation was based on. The Mullard design was well documented in 1954.

1.4 Target Amplifier

In comparison, the 1958-60 Vox AC15 used a normal channel with the same valve config and quite close in design. The 2007 Heritage remake also included ability to switch the EF86 and the EL84 PP stage between pentode and triode modes. Fit amp into a combo plywood enclosure with 16Ω Celestion Vintage 30, in similar layout as 2007 Heritage. Traffolite front panel with similar layout, and including bass shift; brilliance 3-pos; top cut pot; pentode and triode mode switches; standby-off-on switch. Include a Send/Return socket beside the input socket. Possibly have tremolo $2^{\text {nd }}$ channel input coming from a reconfigured Control Unit 6.

2. Modifications so far

Original electrolytics reformed with simple current limited circuit. ESR of 24 uF 550 V cap after reforming $45 \mathrm{mVrms} / 360 \mathrm{uArms}=120 \Omega$, based on 100 Hz rectified ripple from supply through 1 k resistor. Datasheet replacement ESR appears to be circa 14Ω, so could add a new smaller valued bypass capacitor across each old capacitor if needed. Primary side Megger is ok. Replaced waxed paper caps. Using new EL84s, as original pair were too mismatched in bias. Glued parts and wires down where appropriate. Added high-temp silicon with metal ring to EF86 for dampening microphonics - also dampened valve base, and amp wooden base. Glued up aluminium base which had some rattles. Tried higher EF86 screen resistance, but overdrive distortion too significant, so reduced to 1 M 1 . Still to cover enclosure and add traffolite fascia.

3. Measurements

Voltage rail regulation.

Rail	No Load (humdinger)	VS2 load 10 K 5	VS2 load 3 K 65	VS2 load 10K*	Final config Idle (pentode mode)
VS1		440 V	387 V		413 V
VS2		425 V 40 mA	352 V 96 mA		396 V
VS3		373 V	312 V	314 V	361 V
VS4	311 V	263 V	202 V	271 V	
Heater 1,2	6.9			6.51	
Heater 3	5.8				
Sec HT	$366-0-366$		$360-0-360$		$351-0-351$
Ripple C1		3.4	7.2		3.4
Ripple C2		0.03	0.08		0.05
Ripple C3					0.01
Ripple C4					0.005

Note: * no valves. ${ }^{* *}$ No signal valves. ${ }^{* * *}$ No EL84's.
Power transformer primary DC resistance: 0V black; $14.7 \Omega, 220 \mathrm{~V}$, yellow; $17 \Omega, 240 \mathrm{~V}$, green; $17.8 \Omega, 250 \mathrm{~V}$, red.
Power transformer secondary DC resistance: $149+156=305 \Omega$, yellow/yellow. 0V, black. Earth screen, tan tubing.

IRONCORE 1256 (12 H at 56 mA)
16.6H @ 26mAdc: 14.4H @ 45mAdc; 9.5H @ 93mAdc; DCR = 366 .

Ferguson OP308/15/3.75
Secondary as two windings
12 VAC 50 Hz nominal applied to output transformer series connected secondary

Winding	Voltage rms	Turns ratio;	Pri Impedance; Spec level; Notes	
Pri P-P: BLU to BRN	275	$-;$	$8,000 \Omega ;$	N/A
Sec: BLK to CT	6.19	$44.4 ;$	$8,000 \Omega ;$	$4 \Omega ;$
Sec: BRN to CT	6.19	$44.4 ;$	$8,000 \Omega ;$	$4 \Omega ;$
Sec: BLK to BRN	12.38	$22.21:$	$8,000 \Omega ;$	$16.2 \Omega ;$

Output transformer primary DC resistance: $103+135=238 \Omega$ plate-to-plate.

4. Design Info

4.1 Input stage - EF86 in Pentode Mode

Original circuit measurement: VS4=202V; Plate $=113 \mathrm{~V}$; screen=84V; cathode $=1.97 \mathrm{~V}$; $100 \mathrm{R}=92 \mathrm{mV}$. Cathode current $=0.9 \mathrm{~mA}$. RC across 100 k plate load sam as used by Mullard 5-10 and provide a compensation zero-pole to assist stability (phase advance prior to 0dB crossover) using NFB to cathode - not used in R\&H circuit.

Assume supply voltage is VS4 $=330 \mathrm{~V}$; load resistance is 220 k ; and cathode resistor is 2 K 2 . The plate voltage Vp axis intercept is 330 V for no plate current, and the plate current Ip axis intercept is $330 \mathrm{~V} / 222 \mathrm{~K} \Omega=1.5 \mathrm{~mA}$. The Philips datasheet indicates a nominal cathode current of 1.1 mA , a gain of x 188 , and distortion rising at a faster rate above about 250 mV input (ie. output swing 45 V) with a screen resistor of 1 M . Databook pentode curves only for screen Vg2=140V, but Valve Amplifiers book has curves for 100 V . The AC load line is about 140 k , due mainly to the 500 k pot and 1 M gate bleed in parallel with 220k. Measured levels with 4M4 screen resistor has operating point around $\mathrm{Ik}=0.46 \mathrm{~mA}, \mathrm{Vg} 1 \sim=1.02 \mathrm{~V}, \mathrm{Vs}=40 \mathrm{~V}$, - measured levels with 4 M 4 screen resistor has operating point around $\mathrm{Ik}=0.46 \mathrm{~mA}, \mathrm{Vg} 1 \sim=1.02 \mathrm{~V}, \mathrm{Vs}=40 \mathrm{~V}$ and $\mathrm{Va}=225 \mathrm{~V}$ - measured levels with 2 M 2 screen resistor has operating point around $\mathrm{Ik}=0.7 \mathrm{~mA}, \mathrm{Vg} 1 \sim=1.54 \mathrm{~V}, \mathrm{Vs}=65 \mathrm{~V}, \mathrm{Va}=164 \mathrm{~V}$, VS4 $=310 \mathrm{~V}$ (measurements: VS4 $=309 \mathrm{~V}, \mathrm{Va}=162 \mathrm{~V}, \mathrm{Vg} 1=1.54 \mathrm{~V}$; Vs $=67 \mathrm{~V}$). Measured levels with screen resistor $\sim 1 \mathrm{M} 1$: VS4 $=271 \mathrm{~V}, \mathrm{Va}=81 \mathrm{~V}, \mathrm{Vg} 1=2.1 \mathrm{~V} ; \mathrm{Vs}=96 \mathrm{~V}$.

4.2 Input stage - EF86 in Triode Mode

Assume supply voltage is 300 V ; load resistance is 220 k ; and cathode resistor is 2 K 2 . The plate voltage Vp axis intercept is 300 V for no plate current, and the plate current Ip axis intercept is 300 V $/ 222 \mathrm{~K} \Omega=1.4 \mathrm{~mA}$. The gate-cathode voltage Vg 1 operating point varies with plate current through the $2 \mathrm{k} 2 \Omega$ gate-cathode resistance with the characteristic shown on the graph as a line passing through $\mathrm{Ip}=0.5 \mathrm{~mA}$ for $\mathrm{Vgk}=-1.1 \mathrm{~V}$, and through $\mathrm{Ip}=2 \mathrm{~mA}$ for $\mathrm{Vg} 1=-4.4 \mathrm{~V}$. The intersection of the two lines is the nominal biased operating point at $\mathrm{Vg} 1=2.2 \mathrm{Kx} 0.9 \mathrm{~mA}=2.0 \mathrm{~V}$.

The input voltage swing limit is from the bias point at $\mathrm{Vg} 1=-2.0 \mathrm{~V}$ to $\mathrm{Vgk}=0 \mathrm{~V}$, which is about 4.0 Vpp or 1.4 Vrms . Referring to the loadline, the plate voltage would swing from about 25 V to $150 \mathrm{~V}[150-85=65 \mathrm{~V} ; 85-25=60 \mathrm{~V}$; which is fairly symmetric], for a nominal gain of $125 / 4=31$.

If the cathode resistance is increased to 3 k 9 , then the nominal biased operating point is at $\mathrm{Vg} 1=3.9 \mathrm{Kx} 0.8 \mathrm{~mA}=3.1 \mathrm{~V}$, and plate voltage would swing from about 25 V to $200 \mathrm{~V}[200-125=75 \mathrm{~V}$; $125-25=100 \mathrm{~V}$; which is less symmetric], for a nominal gain of $175 / 6=29$.

4.3 Splitter stage - 12AX7 in long-tail pair config

Original circuit measurement: VS3 $=314 \mathrm{~V}$; plate $6=166 \mathrm{~V}$; plate $1=285 \mathrm{~V}$; cathode $=113 \mathrm{~V}$; common cathode resistor $=80 \mathrm{k}$; common cathode current $=1.4 \mathrm{~mA}$, plate resistors $\sim 120 \mathrm{k}$. Possibly leaky cap caused unbalance? Gain is $u \times R k / 2(R a+R L) \sim 110 \times 68 k / 2(40 k+100 k) \sim 25$. Analysis of this circuit configuration in Electronic Engineering Feb 1947 by Clare.

The plate current versus plate voltage load line for each triode is given by the equation:

$$
I p=\frac{V_{p}}{R_{L}+2\left(R_{K}\right)}
$$

Hence load line resistance of about $100 \mathrm{~K}+2 \mathrm{x} 80 \mathrm{k}=260 \mathrm{k}$. The plate voltage Vp axis intercept is 315 V - for no plate current, and the plate current Ip axis intercept is $315 \mathrm{~V} / 280 \mathrm{~K} \Omega=1.1 \mathrm{~mA}$. Platecathode voltage is about $220-110 \sim 110 \mathrm{~V}$.

NOLLDAS HDVA
SOILLSI甘G.LDVAVHD צGASNVY.L GOVGAMV

4.4 Splitter stage - 12AX7 in long tail pair config

The AC-15 uses an equivalent PI circuit to that starting to be used by Fender in their 5F6 at the time. The self-balancing common-cathode PI circuit had been assessed for many years, and was in the 1953 edition of Radiotron Handbook. The plate current versus plate voltage load line for each triode is given by the equation:

$$
I p=\frac{V_{p}}{R_{L}+2\left(R_{K}\right)}
$$

where $R_{k}=1 \mathrm{~K} 2 \Omega+47 \mathrm{k} \Omega=48 \mathrm{k} \Omega$. Hence a load line resistance of about $100 \mathrm{~K}+2 \mathrm{x} 48 \mathrm{k}=200 \mathrm{k}$. With VS3 $=360 \mathrm{~V}$, the plate voltage Vp axis intercept is 360 V - for no plate current, and the plate current Ip axis intercept is $360 \mathrm{~V} / 200 \mathrm{~K} \Omega=1.8 \mathrm{~mA}$. The gate-cathode voltage (Ec on the graph) varies with plate current through the $1 \mathrm{~K} 2 \Omega$ gate-cathode resistance, but with a $2 \mathrm{k} 4 \Omega$ characteristic, and this characteristic is shown on the graph as a line passing through $\mathrm{Ip}=0.5 \mathrm{~mA}$ for $\mathrm{Vgk}=-1.2 \mathrm{~V}$, and through $\mathrm{Ip}=1 \mathrm{~mA}$ for $\mathrm{Vgk}=-2.4 \mathrm{~V}$. The intersection of the two lines is the nominal biased operating point of 1.8 V and 0.75 mA .

Voltage drop across tail 48 k is $48 \mathrm{k} \times 1.5 \mathrm{~mA}=72 \mathrm{~V}$. Hence plate-cathode voltage is about $360-75$ $-2-72=210 \mathrm{~V}$. Plate load resistance dissipation is about $(360-70-72)^{2} / 100 \mathrm{k}=0.5 \mathrm{Wpk}$. Plate dissipation at idle is about $210 \mathrm{~V} \times 0.75 \mathrm{~mA}=0.16 \mathrm{~W}$. [Measured Va=291V \& 285V; Vtail=74V]

The nominal operating point levels of $\mathrm{Vgk}=-1.6 \mathrm{~V}$ and $\mathrm{Vp}=170 \mathrm{~V}$ are used to determine the parameter values of r_{p} and gm and μ from the 12AX7 average transfer characteristics graph (note that Eb is Vp).

The analysis by Kuehnel shows that the gain of each triode is slightly different, due to a small level of common-mode gain adding to the out-of-phase output but subtracting from the in-phase output, which could be compensated by lowering the load resistor for the out-of-phase output. The input voltage swing limit is from the bias point at $\mathrm{Vgk}=-1.6 \mathrm{~V}$ to $\mathrm{Vgk}=0 \mathrm{~V}$, which is about 3.2 Vpp or 1.1 Vrms . Referring to the loadline, the plate voltage would swing about 245 V , from about 55 V to 300 V , with a mid point of $170 \mathrm{~V}[170-55=115 \mathrm{~V} ; 300-170=130 \mathrm{~V}]$ which is quite symmetric. This gives a nominal gain of $245 / 3.2=75$, but the small signal gain is about x 13 with a good headroom.

Parameter	No signal	Notes
R_{L}	100 k	
V_{l}	300 V	$=\mathrm{V}_{\mathrm{RL} \text { oad }}+\mathrm{V}_{\mathrm{P}}+\mathrm{Vk}$
I_{P}	0.65 mA	From bias position
V_{gk}	-1.6 V	From bias position, $=\mathrm{I}_{\mathrm{P}} \times 2 \times 1 \mathrm{~K} 2 \Omega$
Vk	62 V	$=48 \mathrm{~K} \Omega \times 2 \times \mathrm{I}_{\mathrm{P}}$
V_{P}	170 V	$=300 \mathrm{~V}-62 \mathrm{~V}-\left(100 \mathrm{~K} \Omega \times \mathrm{I}_{\mathrm{P}}\right)$
r_{p}	$190 \mathrm{k} \Omega$	$=\Delta \mathrm{Vpk} / \Delta \mathrm{Ip}$
Gm	0.41 mS	$=\Delta \mathrm{Ip} / \Delta \mathrm{Vg}$
μ	$?[78]$	$\mathrm{Graph}\left[=\mathrm{gm} \times \mathrm{r}_{\mathrm{p}}\right]$
G	~ 13	$=\left(\mathrm{u} / 2 \times \mathrm{R}_{\mathrm{L}} /\left(\mathrm{R}_{\mathrm{L}}+\mathrm{r}_{\mathrm{p}}\right)\right.$
Headroom	$14 \mathrm{Vpp}(\mathrm{rto})$	$=2 \times((\mathrm{G} \times \mathrm{Vgk})-14 \mathrm{Vpk})$

Table 1. Phase Splitter Analysis Results for 12AX7

4.5 Output Stage - EL84/6BQ5 Pentode Push-Pull

In this Class AB push-pull output stage, one tube is pushed into conduction and the other tube is pulled into cutoff (class B), and there is a region of Class A overlap where both tubes conduct equivalent levels of current. The cathodes are raised above ground by a common bypassed cathode resistor. The $8 \mathrm{~K} \Omega$ impedance plate-to-plate OPT presents signal currents into each tube with a $4 \mathrm{~K} \Omega$ impedance with both tubes conducting, to $2 \mathrm{~K} \Omega$ load impedance at higher levels.

Determining a suitable bias current level is not an empirical design approach, rather it is based on the following recommendations:

- Start with the lowest bias current possible (ie. most negative grid bias voltage), and based on listening tests, increase the bias current until the sound character is acceptable, but:
- use the lowest possible bias current level, as this generally increases the life of the tubes, and decreases the chance of operating at excessive plate dissipation; and
- keep the bias current level below 70% of the recommended design max plate dissipation (ie. $<0.7 \times 12=8.4 \mathrm{~W}$); and
- assess the dynamic loadline to see if it moves into region of increased plate dissipation.

As the output loading increases, the supply voltage VS2 to the output valve plates sags from about 400 V towards 330 V at about 130 mA average [tbd]. Plate DC voltage will be lower than VS2 by an amount up to $\sim 16 \mathrm{Vpk}$; ie. OPT half resistance of about 120Ω with a peak current of up to about 0.13 Apk . Cathode voltage has an idle bias of 19 V and a peak of 61 V under sustained signal, with an average of $V=\sqrt{ }(3.2 \mathrm{~W} \times 470 \Omega)=39 \mathrm{~V}$ where $\mathrm{I}^{2} \mathrm{R}=(0.083)^{2} \times 470 \Omega=3.2 \mathrm{~W}$. So effective platecathode voltage sags to about $330-39-8=283 \mathrm{~V}$.

Screen voltage will also vary from about 400 V towards 310 V under steady-state heavy load. Screen voltage will be lower than VS2 by up to about $.02 \mathrm{~A} \times 100 \Omega=2 \mathrm{~V}$. STC curves for screen
$\mathrm{E}_{\mathrm{C} 2}=300 \mathrm{~V}$ indicates an 8 K P-P (2 K line) is quite appropriate, and plate dissipation just extends dynamically into high levels, depending on initial bias level and VS2 sag.

The maximum output valve bias current allowed is dependant on the maximum recommended plate dissipation of 12W for the EL84/6BQ5: Ibias $(\max)=\mathrm{Pd} / \mathrm{Vb}=12 \mathrm{~W} / 400 \mathrm{~V}=30 \mathrm{~mA}$. With a common cathode resistance of 130Ω, and gate-cathode voltage of 11 V , the plate idle current is 42 mA , and so needs to be modified for this amps higher supply level. Increasing the common cathode resistance to 230Ω, increases gate-cathode voltage to about 14 V , for plate idle current of 30 mA .

The gate bias voltage required for this current is significantly influenced by the screen voltage. During dynamic conditions, the plate dissipation must continue to remain below 12 W , and so the load line must on average remain in a region below the constant power curve for 12 W shown on the plate current/voltage graph. Each valve has an 'off' period for 50% of time, where the average plate dissipation is relatively low and expected to be in the range between the upper limit of the bias level power dissipation, down to a few watts when most of the period is spent in deep cutoff due to very negative grid voltage levels. As such, the average dissipation during the 'on' period can extend dynamically above the 12 W curve.

The general textbook design process involves choosing a suitable OPT plate-plate impedance to position the $\mathrm{Vg}=0$ and maximum plate current point at the 'knee' of the $\mathrm{Vg}=0$ curve on the plate current-voltage graph. This knee position has a net minimum level of $2^{\text {nd }}$ and $3^{\text {rd }}$ harmonic levels, where moving away -down from the knee - by increasing the load impedance will increase the $3^{\text {rd }}$ harmonic level, and decreasing the load impedance - moving above the knee - will increase the $2^{\text {nd }}$ and lower the $5^{\text {th }}$ - which is generally perceived as the preferred outcome. From the plate characteristics with screen voltage $=300 \mathrm{~V}$, the knee region will drop at heavy loading as screen voltage falls below 300 V , and so the loadline match should be good.

Assuming the loadline sags to about 300 V plate level (from 400 V) and a peak plate current of 130 mA is achieved, then the nominal output power of the amplifier (ideal class B2) would be: $(\mathrm{Ipk})^{2} \times \mathrm{Rpp} / 8=0.13 \times 0.13 \times 8 \mathrm{k} / 8=16.9 \mathrm{~W}$. For this maximum signal condition, the rms OPT current draw is likely about $2 \times 83 \mathrm{~mA}$ (64% of peak), and the average VS2 power consumed is $300 \times 0.166=50 \mathrm{~W}$, and the OPT loss is $2 \mathrm{x}(0.083)^{2} \times 120 \Omega=1.7 \mathrm{~W}$, and the cathode bias loss is 3.2 W , so the tube plates dissipate $50-17-2-3=28 \mathrm{~W}$, or about 14 W each - which is a tad hot. The achieved dissipation may be a tad lower than above assessment, but aim to keep idle bias a bit lower at about 9 W which gives 22 mA nominal. . [16.6 and 20.2 mA cathode currents; 18.4 V cathode bias; Pdiss $\left.=(404-18)^{*} .02=7.7 \mathrm{~W}\right]$

The STC performance characteristics for pentode push-pull class AB1 with 130Ω common cathode resistor and 40 mA idle current, and 300 V supply and 8 k OPT indicate a grid-to-grid drive voltage level of 20 Vrms is needed (28 Vpk -pk), and that screen current can reach 20 mA . However cathode bias voltage is about 10.4 V , so a 14 Vpk grid swing would take grid into positive region??

4.6 Output Stage - EL84/6BQ5 Triode Push-Pull

Using triode configuration of EL84/6BQ5 limits the peak output current capability to about 90 mA , based on curves, and hence the output power is reduced to about: $(\operatorname{Ipk})^{2} \times R p p / 8=0.09 \times 0.09 \times 8 \mathrm{k}$ $/ 8=8 \mathrm{~W}$. In this mode, the off valve is not pushed deeply into cut-off, and so most operation is effectively in class A.

The STC performance characteristics for triode push-pull class AB1 and 300V supply and 10 k OPT indicate a grid-to-grid drive of 20 Vrms is still needed for max output capability. As distortion is much lower, the curves are based on a lower 25 mA idle with 270Ω common cathode resistor.

The Vox Heritage AC15 series common cathode resistor is 150Ω, which is about 11 V bias at $36-$ 40 mA in both modes at 300 V . This amp needs to increase common cathode resistor to about $19 \mathrm{~V} / .04=470 \Omega$ (from triode curves), with peak power dissipation of $\sim(0.13)^{2} \times 470 \Omega=8 \mathrm{~W}$, but an average about 3-4W.

plate voltage (volts)

POWER OUTPUT (WATTS) \& HARMONIC DISTORTION (PERCENT.)

A.F INPUT VOLTAGE GRID-TO-GRID (VOLTS R.M.S)

4.7 Power Supplies

A standard full-wave rectifier circuit is used with 360 V secondary HT windings with centre-tap to 0 V , and a 5 V diode heater winding. A CLC filter is used with 12 H 56 mA rated choke to generate VS2 and ripple on VS2 is quite low. VS3 and VS4 ares obtained by further RC filtering using $22 \mathrm{k} \Omega$ dropper.
The 5 V 4 G can feed directly into $24 \mathrm{uF} \mathrm{C1}$ as secondary winding resistance is $>100 \Omega$. The 5 V 4 is rated to 175 mA max, which is equivalent to the nominal requirement for the output stage plate and 20 mA for screen, and a few mA for the other valves. With 100 mArms loading the 5 V 4 plate drop is about 16 V .

The 5Y3GT has equivalent performance to the 5 V 4 G for this application, although it is slightly lower ratings. The EZ81 in the Heritage is 6.3 V heater but otherwise quite close performance.

The ripple voltage across C 1 and C 2 is mainly 100 Hz , at a measured level of 7.2 Vrms with a load current through the choke of 96 mADC . DC drop across the choke is 37 V at 100 mA . Observed sag in VS2 is about 80 V , indicating transformer regulation and capacitor ESR are significant [tbd].

5. Protection

5.1 HV breakdown

A 0.5 A secondary fuse is added to protect for a short-circuit on VS1 or VS2, as the prospective current could reach $\sim 360 \mathrm{~V} /(150 \Omega+100 \Omega)=1.4 \mathrm{Arms}$.

5.2 Output open circuit

A 470R 3W resistor is added to the 15Ω output tap, to act as a high resistance limit in case the speaker load goes open circuit.

6. Other changes

6.1 Hum reduction

Humdinger tuned for lowest hum.

Here is the amplifier, pentode version. The EF86 is nearest the camera, then the 12AX7, and behind it the two EL84's. Thero is no filter choke in this circuit. Controls, left to right, are-Yolume, Bass, Treble and Change-over Switch from pick-up to radio.
a special amplifier for crystal pickups, that the Mullard circuit should catch our eye.

Not only did it contain much interesting information about the use of the new EL34 output valve, but it also solved very neatly the problem of variable tone controls for use with crystal piek-ups.

It also included an equally neat amplifier-phase-changer combination tising a direct-coupled circuit which looked most promising.

These features were eventually incorporated in the amplifiers to be described in this article.

In general form, however, the amplifiers have been laid out to conform to the Playmaster technique, and the design carried forward to include an ultra-linear output stage.

The desire for a "crystal" amplifier of new design was largely inspired by the release of the EL84, and the possibility of using it to push the output up to the higher level we generally expect from a pair of beam power valves,
It will also answer in one swoop all those readers who have written asking about larger valves in the existing No. 6 circuit which, with its 6BV7's, supplied about eight watts.

We felt, too, that here was a circuit which could be used successfully in a number of ways with no major changes.

CRISTII PICK-ITP AIPIIIIFRIS

A new Playmaster design intended for crystal pick-ups which features both pentode and Ultra-linear output stages, single-chassis layout, continuously variable tone compensation, high output and low distortion. It does not completely replace Playmaster No. b, but is to be preferred when crystal pick-ups are to be used.

THE amazing popularity of good quality amplifiers is such that valve applications engineers have been turning their attention to the production of suggested circuits, with particular stress on the selection of valve types and operating conditions for them.
In England, both Mullard and Osram, to mention only two, have evolved designs which they have fublicised in considerable detatl, and which have achieved great success.
In Australia, the AWA Valve Co. has been carrying out some exhaustive work on amplifiers, with emphasis on the moment on the Ultralinear circuit and its effects on amplifier performance.

DIFFERENT ANSWERS

One of the most interesting and stimulating things about all this is that, although some very competent men have been engaged in working out these circuits, their conclusions are by no means the same.

This must not be taken to indicate that one person has all the answers, and that all other ideas are rumns. The same pattern can be frumd in amplifiers made and sold uncer complencial labels. There are nany goor ones, but rarely two exactly alike.

From our own point of view, we also look over these designs, and in all humility find that we have our own reactions to them. These reactions are governed primarily by our own particular function of interpreting and providing for our readers what we think is the best course for them to take, bearing in mind that they will have to use components which can be bought over the counter, and assemble them without the benefit of special test equipment.

Apart from actual circuitry, these amplifier designs, which originate from valve specialists are particularly valuable in that they give with considerable accuracy vital information on how valves should be used.

Their advice in this matter is really an extension of the valve -characteristics themselves, to which all users must refer when deciding how they can best be incorporated in equipment.

It was only natural, therefore, when considering a new layout for

by John Moyle

Firstly, if no tuning unit is required, it can be built purely as an amplifier, with a power supply giving between 250 and 300 volts, and a low rating power transformer. A heavier power transformer is all that is necessary to convert to a radiogram with one of the standard Playmaster tuners.
Finally, if you want to go for the best, an ultra-linear output stage is the logical ansiver, with the addition of a filter choke to give the best possible fillering.

This version is capable of extremely high performance, limited only by the quality of the output transformer.

PICKUP DIFFICULTIES

In the past, we have published a number of articles about standard crystal pick-ups, and how to use compensation with them to flatten out the response. The crystal pickup is quite the most popular for general use, but unfortunatelyy design makes it almost impossible to avoid peaks and bumps in the output, with the possible exception of some special types.

If trouble is taken to hand-tailor suitable circuits, things can be improved, but our experience has been that there is no single method of

PENTODE VERSION OF THE CRMSTAL AMPLIFIER

This is the amplifier circuit wired with a pentode connected output stage. This version will give almost 17 -watt output with full plate voltage. The filter choke may be omitted and the power supply wired as shown above. The phase correction capacitor marked with an asterisk was chosen for the transformer used, but this value should be OK for almost any other type.
compensation which can be used successfully with all types.

The best idea seems to be to buy the highest quality pick-up you can afford, and to use it with an amplifier having a wide range of bass and treble adjustments, which can be set until the music sounds best.

This isn't an acceptable idea to the seeker after the highest fidelity, but this amplifler, although its response as such is extremely good, isn't designed for these people.

It is intended primarily to give you, on one chassis, something which will work from practically any type crystal pickup and sound well.

The man who is interested in this kjnd of amplifier seems to prefer continuously variable tone compensation controls to the stepped type.

If these controls are to be used to supply all the compensation, there is much virtue in the idea. It allows the utmost flexibility, whereas a stepped control would probably limit the range of adjustment far too much.

RANGE OF CONTROL

This amplifier has quite a wide range of control. The treble cut is quite severe in the maximum condition, but LP records frequently call for this because of their initial pre-emphasis.

The bass response of a crystal generally has a rising characteristic, which helps to compensate for the bass cut in the recording. Consequently special networks designed to level the response are not generally recommended with the ampli-
fier. Best results seem to be obtained by running into a load somewhere between .25 to 1 meg, wired across the pick-up terminals, and then using the controls to do the rest.

The input sensitivity for full output is about 45 volts with the put is about .45 volts with the Both circuits are set for about 15 pentode connection, and about .7 db of feedback. A little more or

Here is the amplifier wired for an Ultra-linear circuit and with a standard power supply using a filter choke. Make sure that the cores of the power and output transformers are at right angles to their centres. Controls, etc, are the same as for the pentode version.

U-LINEAR VERSION OF THE CRYSTAL AMPLIFIER

The Ultra-linear circuit is similar to the pentode version except for the output stage and power supply. Once again the phase correction condenser was chosen for the transformer used. Limiting resistors in the high-tension leads are not necessary.
less would give a corresponding variation in sensitivity.

Note that feedback is placed right around the amplifier, from the output transformer secondary to the cathode of the first amplifier. In the No. 6 Playmaster it will be remembered that this valve was not included in the feedback loop.

The range of compensation is from 10 db of treble boost to 10 db of treble eut, and from 11 db of bass boost to 5 db of bass cut. The "flat" position will occur somewhere near the centre position of each control, but there is some interlocking between them which is difficult to avoid with this type of circuit.

The compensation circuit is placed immediately after the pickup and has a gain reduction of about 12 times. This means that the amplifier itself has an actual sensitivity of around 50 millivolts or less, which, associated with high impedance circuits, is very prone to pick up hum.

INPUT SHIELDING

To avoid this, the controls are grouped along the front edge of the chassis, and a right-angled shield, not shown in the pictures, is provided to completely box in these controls and their associated wiring, as well as the first valve socket and all its associated components.

The filament, power, and output leads to this part of the circuit run through small grooves cut into the edge of the shield, which is held to the chassis by three turnover feet bolted to the underside of the chassis top, and by two small brackets bolted or soldered to the two front corners.

This shielding is effective in completely avoiding any stray pick-up.

The input to the amplifier is via a switch which allows input either from the pick-up terminals or from the 5 -pin socket which connects to the tuner. A shielded lead runs from the switch to the socket. Note that a second switch section shortcircuits the input from the tuner to prevent "play-through" when using the pick-up.

Incidentally, the voltage divider usually employed in the Playmaster tuners to reduce output need not be so severe in its reduction of voltage. Experiment will be
best, but we suggest using resistora of equal value to reduce the available output by one-half.

Construction of the front section is made easy by the earth wire which runs along in front of the potentiometers and connects to the earthed pickup terminal. All components associated with the front end are earthed to this wire, which in turn is connected to the chassis at one point near the 12 AX 7 .

The idea is to provide a single earthing point for this part of the circuit, thus avoiding any possible

PARTS LIST

PENTODE VERSION

1 chassis, $10 \times 8 \frac{1}{2} \times 2 \frac{1}{4} \mathrm{in}$.

1 shield $5 \frac{1}{8} \times 8 \frac{1}{8} \mathrm{in}$. (See article)
I power transformer $285 \mathrm{~V} / 125 \mathrm{~mA}$ (See article).
1 Output transformer 8000 ohms P-P to suit speaker. (See article)
3 Noval sockets (ST29G, mica filled.)
I Noval socket with skirt (Ceramic or mica filled.)
| Octal socket.
I 5-pin socket.
1 min 4-pin speaker socket and plug.
5 valves, EF86, 12 AX7, $2 \times$ EL84, 5 V4.

CAPACITORS

424 mfd 525 V electros, 38 mfd 525
V electros, 2100 mfd 40 V electros, 1.100 mfd 12 V electro, 3.1 mfd 400 \checkmark paper, I .0033 mfd mica. I 680 pf mica, 1270 pf mica. 147 pf ceramic 133 pf ceramic.

RESISTORS
22 meg potentiometers, 1 I meg potentiometer, I 1.5 meg , I 1. meg,
$2.82 \mathrm{meg}, 1.2 \mathrm{meg}, 2.1$ meg 5%, $1.1 \mathrm{meg}_{1}$ I $1.5 \mathrm{meg}, 1.068 \mathrm{meg}$, $1.033 \mathrm{meg}, 1.03 \mathrm{meg} 25000$ ohms 13000 ohms 1100 ohms. (All $\frac{1}{2}$ watt.) 2270 ohms 3 W. I 5000 ohm 3 W. I 1200 ohm I W.

SUNDRIES

28 point tag strips 12 pole 2 -pos. Oak switch. 33 point tag strip, 4 knobs, nuts, bolts, solder lugs hookup wire, tinned copper wire, 2 terminals, power flex and plug.

ULTRA-LINEAR VERSION
In the ultra-linear version the high voltage electrolytics needed are: I $24 \mathrm{mfd} 525 \mathrm{~V}, 116 \mathrm{mfd} 525 \mathrm{~V}$ and 38 mfd 525 V , which replace those shown in the pentode list. The output transformer should be an 8000 ohm plate to plate U/L type, to suit the speaker used. An additional item required is a 10 Hy 125 mA choke.
eartin loops which might oceur, with reaulting hum pickup, if earth points are indiscriminately inade.

This technique is only important in the first slage where the gain is bighest.

The EF86 plate and screen resistors, cathode resistors, and condensers may be supported on a couple of 3-tag terminal strips bolted to the chassis near the EF86 valve sueket. There is plenty of roorn io fit them in under the shicld.

The EF66 is triode-connected and direct-coupled to the cathodecoupled phasewchanger, which we have used in several of the latest circuits.

The original Mullard amplifier used a pentode connection in order to oblain higher gain to support a large amount of feedback. But experience has shown us that high feedback gencraily means individual adjusunent and careful phase colrection if inspability is avoided a big price for the home eonstructor to pay for slightly reduced distortion.

The trioce conneetion gives lower gein, but the use of less [eedback brings the trital sensitivity up to rihoul the same figure.

The EFR6 bias is adjusted to give about the same plate current as with pentode connection, so that the walues for the direct-coupled circuit may remain almost unaltered.

The main objection to direct coupling is that, if cilher value should yary in emission, circuit conclitions may be upset. However there is a certain amount of automitic compensation which reduces this risk to a reasonable level.

Absence of a coupling condensea reduces the phase shift in lhis portion of the amplitier. and adds to stability.

AMPLIFIER IS STABLE

In practice we found it impossible to make the circuit oseillate, even with feedback well over 20 db and wilh grossly incorreet phase ecrection values across the ieedback resistor
This inherent slability is a valusoble feature where a wide ehoiee of output transformers is involved.

The phase-inverter and output stage are lait out to provide exact symmetry in the push-pull eonneetion. The iwo plate connections for the 12AXT have their axis parallel with the tront edge of the chassis so that the coupling condensers fall naturally into place. A terminal strip placed just ahead of the output sockets carry the grid resistors and suppressors, end also anchor the cathode resistors and condensers. A glance at the underchassis photograph will tell you all you need to know to put you on the right track.

We have not used screen suppressucs because at tho time were bher lound nocessary. Even the prid suppressors are there merely as a precaution.

The output bias resistors may need to be 250 and 20 ohms in series if the odd value is hard to get.

The output transformer must be molnted with its corc cxactly at right angles to that of the power transformer to avoid mutual coupling, If this is done there will be no hum pickup despite their jroximity.
If you are very fussy you can pick the exact position by test in

UNDER-CHASSIS OF AMPLIFIER

This picture is referred to in the article and shows dearly almost every componerit. It is the pentode amplifier- the U-L version has only twa main filter, condensers, nhown at the lafl. Note the corner brackets which help to mount the shield over the front and. Symmetrical layout has baen aimed at.
a manner described several tirnes in past issues, remoying the reelifici but leaving the mains connected to the power 1 iranstormer.

For the pentode version a straight output transformer of 8000 ohms outpul impedance is used. It must be of reasonably good quality which rules oul the PA type. Severul gond reulti-section transiormers are obbinable, and it is wood vractice to buy the best you can aftord.

NO FILTER CHOKE

With the pentude cunnection it is possible to elimioate the finter choke to save on cost, using inslead a rosistance capaeity filter for the outpui screens and the remainder of lhe circuit, and fecoing the plates directly trom the rectifier. With Leam power valves end pentodes, having a high plate resistance, this is quite satisfactory.

It calls for extra filti> condensers which offset the saving of a choke but of eourse you can use a choke in the normal way if you have one.

We have included this bype of resistance-capacity filter in thic pentode circhit to illustrate the point.

Note the small i-watt resistors conceeted in serjes with the high voltage leads to the transformer. These limit the peak current denonded from the rectifer by the high first capaeitor value, and avoid damasiry it. The exact value should be calculated after metsuring the resistance of the windings, but the value given sliould be adequate in most cases. The underchassis piclure was taken with this circuit.

The filter condensers are supported at the "hot" end with a resislor strip, which also supports a decoupling condenser and the dropping resistor for the tunder.

Thore is plenty of room to supporl these odd eomponents in alriust any manner you choose, but we have shown you our amplifier is a guide.

- In the ultra-linear pircult, the screens cannot eusily be isolaled trom the plate eircuit, and we strongly advise the use of a fitter choke and a normal connection as shown. The first filter condenser should not be higher than 16 mfds with this circuit

In all cases a 285 volt transformer will supply about 300 valts between
the output plates and eathodes. If to taner is used, a 100 mill rating will be enough But as the tuner night well run to another 20 mills, the rating should be increased by this amount if you want the radlo as well.
The 5000 ohm resistor will drop the tuner voltage to about 230 volts. and an extra 8 mids decouplel is added for safety.

The only difference in the output eonncetions for UL work is to connect the sareen lappings to the corsect sides of the circuit, as indiceted by the manufactuter. If you get them crossed, the circuit will osciliate.

Separate bias resistors are used for the output values. With valves having a high mulual conductance. this is oflen a good idea to allow the automatic bias to compensate Lor current variations. It makes Jitile difference to dislortion uniless Ihe valves ace appreciably unbolanced.

CATHODE BYPASS

High value cathude bypasses are usedt to hold up the base response aud ayoid phase shifl at low frequenctes.
The feedback resistors are differcot for euch ofrelit because the gilin is greater with the pentode connection. The exact value of the phase correction condenser marked with an asterisk will depend on the outpur transformer, and we have given the value uscd with the tratisformers shown. If you are in doubt. AT 2 pf shoult be about right. The values given wore chosen for
least ringing and best square-wave per formance.

We built our amplifier on an alum minium chassis which is easier 10 work than steel, but there should be little difference between the two, particularly if care is taken with the single-point earthing of the first stage.

This is a squase-wave tracing of the U-L amplifier at ofrequency of 5 KC . It shovs aimost complate absenca of overshoot and ringing, and illesirales the good over-all Irequency response.

Blue-prints will be supplied to the chassis makers so thal you ban order your chassis in the normal way.
We do not intend to indicate noounting holes for either the power supply or the oulpui transiomer, because there ure a number of makes available, and unfortunately their mounting axrangements are not standardised.

But it. is usuelly not a matler of great difficulty to cirill sullable holes
on the chassis, and we have taken care io leave enough room for any of the well-known makes.

The same point applics to output transformers. Sone requile rectangular eut-cuts and some need only holes to allow the leadz to pass through.
A cut-out can be made quite easily by drilling an oulline with holes which almant overlap, knocking out the section, and cleaning up the ragged edges with a fle.

FRONT END SHIELD

The shield for the front section is simply a right-angled metal section litting closely inside the width of the chassis. The vertical edge lits down just ir. front 0_{2}^{*} the 1 mfd eoncenser wired to the 12AX7 valve socket, and clearly visible in the picture. If you look closcly you will see the three holes in the chassis by which the three litele feet are bolled to it, one at each end and one in the middle.

Clearly visible, too, are the two corner brackels, supporting the lop fold of the shied. These are mounted below the chassis edge by arl anoount equal to the thickness of the shield metal, so that wher in place the shieid is Husin with the buttom of the chassis. The biackets are rapped for $1-3$ in bolts, using countershus heads set flush in the metal.

The underchassis photograph show alse the lead to the finner af the right. and the tilatnent and [eedback leacls running back near the eontre of the chassis. A third set of leats run belween the first

The PHILIPS Verted Spooker Enclosure is scientitically designed to give perfect, authentic musical reproduction when matched with any high quality 12 in speaker. Craftsman constructed and acoustically damped internally. this unit will be appreciated by all who truly love good musie. Speakers are not supplied as an integral part of the unit but specialist free advice will help you obtain an appropriate speaker for your application. Write to your local PHILIPS brameh for full information on this or any sudio reproduction equiprrent.
two sockets-they are the plategrid coupling connection and the single-point earth read. Thus you will need three little nicks cut in the edge of the shield to give them tree passage.

The feedback resistor and ils eondenser are mounted on thic two un~ used pins of the 4 -pin spcaker sGcket.

The white circle seen near the EF86 valve soeket is the plate decoupling condenser standing on ils end, so that it is earthed to the common carth wire, also elearly visible.

The controls are filied with medium-sized knobs, and details of the escutcheon plate will be supplicel to advertisers so that one may be ordered in the usual way.

The feedback resistor values are given for 15 ohm speakers whieh are generally characteristic of the belter types.

For 8 ohm speakers the resistance value shculd be reduced to iwothirds the value given, and ior 2-ohm speakers to one third. The phase-correctinn condouser should be increased by a similar anjournt.

CIRCUIT BALANCE

For accurate bolanee in the phase changer circuit, the lwo plate resistors, specified as .1 nieg (5 pe solerance), should be of different values. In mosl cases it wili not be essential to worry about it is the unbalance is unlikely to oxceed a few per cent.

If you are keen to compensate for this point, it should be noted that the plate resistor of the sucu tion whief has lite grid grounded through the .1 midd concicnser, has The larger value.

With a valve such as the 12 AX ? the difference in value is estimaled as 3 pc , whieh means that a 3000 ohm resistor should be included in series with the 1 meg plate load to achleve Derfect balance.

It is a good plan to measure youlr two resistors on an ohm-meter, Select the one which has the larger value for use in this posiljon, if it is possible to detect any difference at all with 5 pe resistors.

FILAMENTS

If you have reason to belfeve the differenee is equal to something like 3000 ohris, no extra resistor need be used, as there is no point in having the 1 values accurate to microscopic limits. It is the small difference in value which is importani.

Note that the tapped 6.3 V winding of the rransformer is the one to use for the EF86. is a balanecd earth eomnection is valuable in recucing the danger of hum in high gain audio circuila.

This winding is also used for the tuner to balance the orain between the flament windings, and it is therefore important to see that the fildment circuit in the funer is not connected to its chassis. To do this would be to short-circuit onehalf of the winding.

The Playmaster tuners were all designed withont a flament earth but if you use a different type of tuner you should waich this point.

There is no advantage to be gained by centre-tappire the second fila-
ment winding, which feeds the last ilseee valves.

Nor is there any improvement to the noticed by relurning the centretapped filament to a positive voltabe, as was done with many of tlie Playmasiers. Some of these detugns ran with i sensitivity much bigher than that of the two described here.

THE PICK.UP

The selection of a pick-up roust be a matter oe individual choice, and it is an oovious rembrk do say that the best pick-ups sound bost. They generally have a lower output than the standard twin-stylus caritidges, but we have used the nmplijier with a number of types, and they all provide ample volune on standard dises.

It is quite worth while to buy a good speaker for use with these amplifiers, as their perfornance will show thal they both merit it. Here aguin cost and personal preterence cumus into it.

Aciequate bafiong is quile essential tor mny such speaker, and the batkers oftun provicle designs lot stitable enclosures los ute wint their speakers.

If you are in any doubs about We value of reedback resistor required for any given speaker, it chould be of such a valuc as 10 give a galn reduction of between five and six fimes when connected into circuil.

If you find you have more volume that you can use, it is quite in orcter to use a higher reduction factor which wilk, of course, give more ieedback.

It shotald rately be reccessiry to jush this factor higher dian 10. Which represcints 20 db of feedbate, atthotuch both amplisers will be quite stable with lhis amount.

PERFORMANCE

A few figures about the amplifers tested without the compensation circuit will be of interest. With each amplifer the square wave shape was extremely good. We have tiven a tracing of the wave-form of one UL version taken at 5 Kc , showing an almost perfect pattern. The pentode circuit was quite comparable, althougn we would expect better linearity and lower distortion with the UL connection.

A typical response eurve for one of the fransfiommers tested showed if flat rezponse to $90 \mathrm{Kc}, 1$ db drop at 125. 2 db at 140,3 ab at 175 and $6{ }^{\circ} \mathrm{db}$ at 210 Kc . Some translormers did better lhan this. This performance is only bettered by our best amplifiers using the highost qualidy paris, and in any case compares very woll with the best eommercial st.andards.

Power output of the pentode antplifier was 16 watts al 1 Ke . Output of the UL version was 13 watts at 1 Kc and 9 waths at both 20 cycles and 10 Kc . Input sensitivity at the grid of the first valve was 50 milliwatts, and the effective plate voltage 300 volts. The teedback was 15 db to which must be added the feedback provided around the output stage by the UL connectlon. This is enough to reduce distortion to a negligible amount.

Hum level is so low that, even with an ear at the speaker, it ean barely be heard.

The RADIO MASTER
 RADIOGRAM CHASSIS

a great performer on
 Radio and Records

FEATURES:
Pight valven world range Push puld output - treble and biss stage - Inverse fited-back \rightarrow Ref. stage - Three position switch for radis and gramophone - Switchpot
for volunte gind porfer supply for volunte and power supply latest f.ype nigh gais valyes-omtralght Inne edge lit dial in four colours - Moulded escutcheon plate. size $12 d i n$ x iln-1sin speaket. choice of Rula, Jemsen or Musimvox - $3 i x$ montlif: guntantee - Chassis siae: 131a x sin \times gln high.

Price £32/10/-

Freight Extra

Money back guarantee on chassis
FIVE Valve radiogram CHASSIS. PRICE $521 / 10 /-$

Cocktoil ond Stondord RADIOGRAM CABIMETS

Many popular designs available, including Swedish. Firit-class finish. Send for Catalogue.

Cocktailotann cabinet os iltustrated 18 4ft fin wide and supplied ready to fit yout own chatiger and ehansis. Cembre section hos tour inasis. Centre section has tour plees of Inirror glask (side to stide), glass shelf, philenia lamp, automatic switch actaated by oppinitit door and chronie plated accessoties, Price: Ess plus El for packing, fresint extra. Also a vaijable withont fiass to sult taper re* corders.
all TYPES of THREE SPEED RADIOERAM UNITS H. B. Radio Products

5 Carrington Street, Lewisham, SYDNEY Telephone: LM5580 Establithad 23 years

[^0]: ${ }^{1}$ Appears to be Philips Canada from the ' r ' code. And the date code indicates possibly original 1955 parts.

